The Sequent Calculus Trainer with Automated Reasoning - Helping Students to Find Proofs

نویسندگان

  • Arno Ehle
  • Norbert Hundeshagen
  • Martin Lange
چکیده

The sequent calculus is a formalism for proving validity of statements formulated in First-Order Logic. It is routinely used in computer science modules on mathematical logic. Formal proofs in the sequent calculus are finite trees obtained by successively applying proof rules to formulas, thus simplifying them step-by-step. Students often struggle with the mathematical formalities and the level of abstraction that topics like formal logic and formal proofs involve. The difficulties can be categorised as syntactic or semantic. On the syntactic level, students need to understand what a correctly formed proof is, how rules can be applied (on paper for instance) without leaving the mathematical framework of the sequent calculus, and so on. Beyond this, on the semantic level, students need to acquire strategies that let them find the right proof. The Sequent Calculus Trainer is a tool that is designed to aid students in learning the techniques of proving given statements formally. In this paper we describe the didactical motivation behind the tool and the techniques used to address issues on the syntactic as well as on the semantic level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sequent Calculus Trainer - Helping Students to Correctly Construct Proofs

We present the Sequent Calculus Trainer, a tool that supports students in learning how to correctly construct proofs in the sequent calculus for first-order logic with equality. It is a proof assistant fostering the understanding of all the syntactic principles that need to be obeyed in constructing correct proofs. It does not provide any help in finding good proof strategies. Instead it aims a...

متن کامل

Automated Reasoning in Quantified Non-Classical Logics

This paper introduces a non-clausal connection calculus for intuitionistic first-order logic. It is an extension of the non-clausal connection calculus for classical logic by prefixes and an additional prefix unification, which encode the Kripke semantics of intuitionistic logic. nanoCoP-i is a first implementation of this intuitionistic non-clausal connection calculus. Details of the compact P...

متن کامل

Reasoning in Extensional Type Theory with Equality

We describe methods for automated theorem proving in extensional type theory with primitive equality. We discuss a complete, cut-free sequent calculus as well as a compact representation of cut-free (ground) proofs as extensional expansion dags. Automated proof search can be realized using a few operations to manipulate extensional expansion dags with variables. These search operations form a b...

متن کامل

Interaction and Depth against Nondeterminism in Proof Search

Deep inference is a proof theoretic methodology that generalizes the standard notion of inference of the sequent calculus, whereby inference rules become applicable at any depth inside logical expressions. Deep inference provides more freedom in the design of deductive systems for different logics and a rich combinatoric analysis of proofs. In particular, construction of exponentially shorter a...

متن کامل

Combinatorial Proof Semantics

The paper Proofs Without Syntax [Annals of Mathematics, to appear] introduced the notion of a combinatorial proof for classical propositional logic. The present paper uses combinatorial proofs to define a semantics for classical propositional sequent calculus, an inductive translation from sequent proofs to combinatorial proofs. The semantics is abstract and efficient: abstract in the sense tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018